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 12C |sotope—> natural abundance (98.93%,
S=0)

« 13C |sotope = important for NMR (1.07%,
S=1/2)

 14C |sotope = important for archaeological
dating (average lifespan 5730 years)
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The energy of each
electron in multi-electron
atoms depends not only on
n, butalsoonl; a
fundamental consequence of
inter-electronic
interactions.

Splitting of energy levels
into multiple sublevels with
distinct and increasing
energy, for a given n value,
as | increases.

Between level 3 and level
4, there is an overlap of
energy levels.
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sp3 hybridization
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Allotropic states of carbon

Diamond Graphite
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c¢ 99
1 s-orbital 3 p-orbitals 2 sp-orbitals 2 unchanged
/ p-orhitals
% .SI.
Linear gecmetry
Due possibilita: (a) poliini, alternanza legami tripli e doppi (b) cumuleni, catena di legami doppi

Problema: i sistemi di carbonio sp sono instabili

* reattivita delle catene insature (es. O,);
* tendenza a formare cross-links fra le catene, favorendo I'evoluzione verso la piu stabile fase sp?.

Catene sp isolate sono state osservate solo in fase gassosa o in matrici di gas inerti a basse temperature.
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A new allotropic form of carbon occurs in shock-fused graphite gneisses in the Ries Crater,
Bavaria. The assemblage in which it occurs consists of hexagonal graphite, rutile
pseudobrookite, magnetite, nickeliferous pyrrhotite, and baddeleyite. Electron-probe analyses
indicate that the new phase is pure carbon. It is opague and much more strongly reflecting
than hexagonal graphite. Measurement of x-ray diffraction powder patterns leads to cell
dimensions a = 8.948 £ 0.009, c = 14.078 = 0.017 angstroms, with a primitive hexagonal
lattice.

ARTICLE TOOLS

o Email

{© Reguest Permissions
@ Citation tools

MY SAVED FOLDERS
= Save to my folders

Science
Vol 161, Issue 3839
26 July 1968

Table of Contents
Back Matter (PDF)
Ed Board (PDF)
Front Matter (PDF)

STAY CONMECTED TO SCIENCE

s Facebook
s Twitter



Nanotubi
(ljima 1991)

Fullerene (Cyg)

Curl, Kroto e Smalley, Nobel Nanostructures.....................
Prize in Chemistry 1996



Graphene

K. Novoselov, A. Geim
Nobel Prize in Physics 2010
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Diamond < Graphite

Table 2.1

Properties of graphite and diamond

Property Graphite* Diamond
Lattice structure Hexagonal Cubic
Space group P6,/mmc (DL) Fd3m (O})
Lattice constant® (A) 2.462 6.708 3.567
Atomic density (C atoms/cm?) 11410 1.77 x 108
Specific gravity (g/cm’) “ 226 3.515
Specific heat (cal/g-K) o 0.12
Thermal conductivity* (W/cm-K)* ~25
Binding energy (eV/C atom) E 12
Debye temperature (K) 2500 950 1860
Bulk modulus (GPa) 286 422
Elastic moduli (GPa) 1060¢ 365 | 107.6°
Compressibility (cm¥/dyn) 2.98 x 10-1 226 x 10~
Mohs hardness’ 9 10
Band gap (eV) —0.045 547
Carrier density (10"%/cm® at 4 K) 5 0
Electron mobility* (cm?/Vsec) 20,000 100 1800
Hole mobility* (cm?/Vsec) 000 %0 1500
Resistivity (f}cm) @x10¢ D ~10®
Dielectric constant® (low w) [ 50 5.58
Breakdown field (V/cm) 0 10’ (highest)
Magnetic susceptibility (10-%cm’/g) -0.5 21 —
Refractive index (visible) 24
Melting point (K) 4450 4500
Thermal expansion® (/K) —1x 10 29 x 107¢ ~1x10*
Velocity of sound (cm/sec) ~2.63x10° ~1x10° ~1.96x10°
Highest Raman mode (cm~') 1582 1332

4For anisotropic properties, the in-plane (ab plane or a-axis) value is given on
the left and the c-axis value on the right.

bMeasurements at room temperature (300 K).

¢Highest reported thermal conductivity values are listed.

dIn-plane elastic constant is C,, and c-axis value is Cy,. Other elastic constants
for graphite are C,, = 180, C,; = 15, C,, = 4.5 GPa.

¢For diamond, there are three elastic constants, C;, = 1040, C;;, = 170, C,, =
550 GPa.

T A scale based on values from 0 to 10, where 10 is the hardest material (diamond)
and 1 is talc [2.8).

2A negative band gap implies a band overlap, i.e., semimetallic behavior.
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Diamond synthesis
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Graphite Structure

hexagonal graphite  rhombohedral graphite

Plane A
—————— Plane B

= Plane A

------ Plane B




Hexagonal graphite:
unit cell
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Graphite unit cell

Hexagonal group P 63 MMC #194







2D reciprocal lattice

A_2p PXC . B_2n X3 . C_op 2xb
a*bhxc a‘bxc a*bxc

We can use our definitions for the three-dimensional case in this two-dimensional
problem if we assume that e is parallel to the z-axis, so the plane of the
reciprocal lattice vectors A and B will be in the plane of a and b. Let c=2.
Now

cxa - zx(2Xx)=2y;

bxec—~Xxz+2yx2z ¥+ 2% abxe -4
These results substituted in (33) give
A=nx—§ ny; B ny,

as shown in figure 21.
Reciprocal lattice in two dimensions. A two-dimensional lattice (Fig. 21) has basis
vectors a = 2x; b = x + 2y. Find the basis vectors of the reciprocal lattice.

y to S .

i)
: L
Crystal lattice Reciprocal lattice
3
X
. >
P

Kittel, Introduzione alla fisica dello Stato Solido




Graphene: unit cell and

Ist Brillouin zone
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Graphene: unit cell and

Ist Brillouin zone
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Tight Binding (LCAO)

U(r) = 5 e* *o(r — R),
g ¢ Wannier functions

y n atomic orbitals (denoted by X(r) below)
d;'“} - Ebnt}yu{”'

e’ A - . N .
~ A v =23 -
Ui+ R) = & MY(r). T W A

Bloch condition

If the cell includes a basis......

be(r) =) cja €Y Y R g (r— R - dj).
jox R

where @,,(r) are the orbitals of a single isolated atom of atomic number Z,
centered at the origin, identified by the index a € {1s, 2s, 2p, ...}. R indicates a
generic vector of the Bravais lattice, j is an index that identifies the base sites of
the crystal, d; is the position of the j site within the unitary cell and finally the c,
are the unknown coefficients of the linear combination.



Graphene: Electronic Properties
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X-ray absorption measurements of high resolving
power for potassium, which iz expected to show
wider departure from free electrons, have been
carried out by Platt. The K edge investigated
shows quite close agreement with his theoreti-
cally predicted absorption which was based on
the assumption that the electrons are free. No
evidence existed to show an energy gap. This,
of course, is at best supporting evidence of the
non-existence of a gap in potassium since gaps

18 J. B, Platt, Phys, Rev, 69, 337 (1946),

FPHYEICAL REVIEW

VOLUME 71,

WALLACE

may exist which could be completely masked by
the eigenvalue dependence upon wave wector
direction.
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The Band Theory of Graphite

P. R, WaLLACE®
National Research Council of Canada, Chalk River Laboratory, Chalk River, Oniariv

{Received December 19, 1946)

The structure of the electronic energy bands and Brillouin zones for graphite is developed
using the “tight binding” approximation. Graphite is found to be a semi-conductor with zero
activation energy, i.e., there are no free electrons at zero temperature, but they are created
at higher temperatures by excitation to a band contiguous to the highest one which is normally
filled. The electrical conductivity is treated with assumptions about the mean free path. It is
found to be about 100 times as great parallel to as across erystal planes, A large and anisotropic
diamagnetic susceptibility is predicted for the conduction electrons; this is greatest for fields
across the lavers. The volume optical absorption is accounted for,

1. INTRODUCTION

HE purpose of this paper is to develop a

basis for the explanation of some of the
physical properties of graphite through the band
theory of solids. We shall be concerned pri-
marily with a discussion of its electrical con-
ductivity, but the treatment given makes pos-
sible the explanation not only of the electrical
conductivity and its anisotropy but also the
thermal conduetivity, diamagnetic susceptibility,
and optical absorption.

The electrical resistivity of single crystals of
graphite is about 4 to 6% 107% ohm-cm.! This
corresponds to a conductivity of the order of
that of a poor metal. The temperature coeflicient
of the conductivity is negative, as in the case of

* MNow at MeGill University.
1 Given by E. Ryschewitsch, Zeits, [, Elektrochem. ang.
physik. Chemie 29, 474 (1923), as 3.9-6107* chm-cm.

a metal. Polyerystalline graphite, on the other
hand, has a much higher resistivity which varies
very strongly according to the type of graphite
used, and has a pesitive temperature coefficient
of conductivity® to about 1400°C, and negative
thereafter. Since the crystals of commercial
graphites tend to be of the order of 10~* cm, and
it is quite porous [density ~1.6 as against 2.25
for single crystals), it seems reasonable to
attribute the high resistivity of polyerystalline
graphite to the crystal boundaries, on which may
be lodged impurity atoms. The latter would tend
to be driven off on heating, thus accounting for
the observed temperature dependence. We shall
show, however, that the band theory would
seem to make possible the explanation of the
conductivity properties of single crystals.

2. A, Hansen, Trans, Am. Electrochem. Soc. 16, 329
(1909} gives 137,510 at 0°C B2.53 10~F at 1400°C.



Tight Binding In graphene
(Wallace 1946)

Phys. Rev. 71 (1947) 622

¥=pi1t+ A2 fX(rur,i)X(l‘“-rB)dT=0-

o1=2_ 4 exp[ 27k -ra ] X (r—1r4) } No overlap among p? orbitals
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Hy -+ H s =ES,
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Graphene: Electronic Properties

Hii=Hq By Symmetry 1
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Graphene: Electronic Properties
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Multigraphene (2 layers)
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Robust superconductivity in magic-angle
multilayer graphene family

3= Yuan Cao'?, Li-Qiao Xia
2 and Pablo Jarillo-Herrero

1, Shuwen Sun’, Kenji Watanabe ©2,
1=

Jeong Min Park
Takashi Taniguchi

The discovery of correlated states and superconductivity in magic-angle twisted bilayer graphene (MATBG) established a new
platform to explore interaction-driven and topological phenomena. However, despite multitudes of correlated phases observed
in moiré systems, robust superconductivity appears the least common, found enly in MATBG and meore recently in magic-angle
twisted trilayer graphene. Here we report the experimental realization of superconducting magic-angle twisted four-layer and
five-layer graphene, hence establishing alternating twist magic-angle multilayer graphene as a robust family of moiré super-
conductors. This finding suggests that the flat bands shared by the members play a central role in the superconductivity. Our
measurements in parallel magnetic fields, in particular the investigation of Pauli limit violation and spontaneous rotational
symmetry breaking, reveal a clear distinction between the N=2 and N> 2-layer structures, consistent with the difference
between their orbital responses to magnetic fields. Our results expand the emergent family of moiré superconductors, provid-
ing new insight with potential implications for design of new superconducting materials platforms.

oiré quantum matter results from stacking two or more
M atomically thin materials with a lattice mismatch or at

a relative twist angle’. Motivated by the discovery of
magic-angle twisted bilayer graphene (MATBG)-, in the past few
years moiré systems with different types of constituent layers and
structures have been created, hosting a number of correlated and
topological states. Phenomena including but not limited to corre-
lated insulators, quantum anomalous Hall effect, ferromagnetism,
and generalized Wigner crystals have been discovered and repro-
duced in various new moiré systems® . However, for the first few
years robust and reproducible moiré superconductivity was seen
only in MATBG™, despite reports of signatures of superconduc-

tivity in a few other systems™**'-

studied, providing insights into the nature of the correlated states,
non-trivial topelogy and superconductivity’ -, It has been
theoretically shown™ that for three or more twisted layers of gra-
phene, there are similar series of ‘magic’ angles if the layers are
alternatively twisted by (8, —-6.8,...) (Fig. 1a). The values of such
angles can be analytically computed from the bilayer value in the
chiral limit, where the interlayer hopping at AA sites is turned off™.
As illustrated in Fig. 1b, they are in fact elegantly related by simple
trigonometric transformations, that is the largest magic angle can
be expressed as By = Haccosgry, where N is the number of layers
and &, =28,_, is the asymptotic limit of the largest magic angle as
N—swo. As N increases, the magic angle increases and the moiré
length scale decreases. The real magic-angle values deviate slightly



Graphite: electronic properties

SYMMETRICAL
BRILLOUIN

ZONE

VO>> Vn

4
ALTERNATIVE
BRILLOUIN

ZONE

vo = 3.16, y, = 0.39,
2 = —0.020, y3 = 0.315, y, ~ 0.044,
ys = 0.038; A = —0.008 eV



Graphite: electronic properties
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Graphite: Fermi surface

Electron pocket

Dresselhaus 1964






